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ABSTRACT

Density functional theory (DFT) calculations using sixteen different approaches, fourteen of which were designed to include dis-
persion interactions [DFT + D and van der Waals (vdW)-DF methods], were performed for a set of sixteen framework compounds
with either SiO2 or AlPO4 composition. The compounds include four dense structures (α-quartz, α-cristobalite, and their AlPO4
analogues), eight all-silica zeolites, and four aluminophosphate zeotypes (AlPOs). We analyzed the performance in reproduc-
ing the equilibrium structure for all systems, and computed bulk moduli and relative stabilities were compared to experiments
for those compounds where experimental data are available. We found that the results obtained with functionals that take into
account dispersive interactions are closer to experiments than those obtained with a bare generalized gradient functional. How-
ever, the variation among individual methods is considerable, and functionals that perform well for one quantity may give rather
large deviations for another. Taking together the whole body of results, it appears that the Perdew-Burke-Ernzerhof functional
including a many-body dispersion correction and the rev-vdW-DF2 methods present the best performance for the description
of SiO2 and AlPO4 materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085394

I. INTRODUCTION

Conventional density functional theory (DFT) methods
are unable to correctly capture dispersion interactions
because the long-range electron correlation that is responsi-
ble for these interactions is missing when using typical local
or semi-local exchange-correlation functionals (such as the
local density approximation—LDA or the generalized gradient
approximation—GGA). To remedy this shortcoming, a variety
of approaches to incorporate van derWaals (vdW) interactions
in the framework of DFT have been proposed, which are the
subject of several recent review articles.1–3 While the inclu-
sion of dispersion is pivotal to compute reasonable binding

energies for non-covalently bound complexes4–7 and molec-
ular crystals,8,9 it also has a significant impact on computa-
tions for inorganic materials. In this regard, DFT methods that
incorporate van der Waals interactions have been tested—and
compared to conventional DFT—for structural, energetic, and
(sometimes) other properties for a variety of inorganic sys-
tems, among them ionic crystals, simple covalently bonded
solids, layered materials, sheet silicates, and several SiO2 poly-
morphs.10–14 As a representative example, we briefly summa-
rize the approach and results of Tawfik et al.14 These authors
assessed the performance of 11 approximate van der Waals
methods for the prediction of interlayer distances c0 and
binding energies Eb of several two-dimensional materials like

J. Chem. Phys. 150, 094102 (2019); doi: 10.1063/1.5085394 150, 094102-1

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

graphene, boron nitride, and MoS2. Overall, there appeared to
be a “trade-off” in the accuracy for structures and energetics:
those functionals that gave accurate Eb values typically gave
poor interlayer distances and vice versa. Only a few meth-
ods, most prominently the Perdew-Burke-Ernzerhof (PBE)-
many-body dispersion (MBD)/FI approach, which includes
many-body dispersion contributions using a “fractional ion”
approach,15 performed well for both quantities. The authors
attributed the shortcomings of other methods to inadequacies
in the underlying polarizability models.

Due to their widespread applications in adsorption, ion
exchange, and catalysis, zeolites are one group of porous inor-
ganic materials that have attracted the interest of experi-
mentalists and theoreticians alike.16–19 Approximate van der
Waals methods based on DFT have been widely employed to
study interactions between guest molecules and zeolite hosts,
especially in the context of computational studies of adsorp-
tion.20–26 Moreover, it has been established in the last few
years that the inclusion of dispersion interactions is also piv-
otal to achieve an accurate reproduction of structural proper-
ties and thermochemistry of zeolites and related materials. In
the following overview, we focus on neutral-framework zeo-
types, especially all-silica zeolites, i.e., zeotypes with a pure-
SiO2 composition. Before the development of dispersion-
corrected DFT, a study by Civalleri et al. published in 1998
showed that different exchange-correlation functionals (LDA,
GGA-type BLYP, and hybrid B3LYP) all give the same trend in
the relative stability of three zeolite frameworks (here, the rel-
ative stability is defined with respect to α-quartz, the stable
SiO2 polymorph at ambient conditions).27 However, the quan-
titative variation of the computed energy differences ∆EDFT

(where EDFT(quartz) defines the zero point) was found to be
considerable. Astala et al. observed that the LDA functional
gives rather accurate lattice parameters and Si–O bond dis-
tances, whereas the GGA-type PW91 functional overestimates
the lattice dimensions and bond lengths.28 On the other hand,
LDA, despite its well-known tendency to “overbind,” results
in too small ∆EDFT values when compared to experimental
enthalpies of transition ∆Htrans. Nevertheless, it is still bet-
ter than PW91, which gives very small energy differences that
sometimes even have the wrong sign, i.e., PW91 predicts some
zeolites to be more stable than α-quartz. An underestimation
of ∆EDFT that is comparable to that of LDA was also observed
for the B3LYP functional, which incorporates a fraction of
exact (Hartree-Fock) exchange.29

In 2015, two groups of authors showed that the inclu-
sion of dispersion interactions in the DFT calculations greatly
improves the accuracy of the calculated structures and prop-
erties of all-silica zeolites.12,30 Studying a total of 14 all-silica
zeolites for which experimental enthalpies of transition are
available, Román-Román and Zicovich-Wilson showed that
use of the hybrid PBE0 functional with a “Grimme-type” dis-
persion correction (PBE0-D2) results in almost quantitative
agreement between the computed ∆EDFT and experimental
∆Htrans values.30 They also pointed out that dispersion inter-
actions are to a large extent responsible for the stabilization
of α-quartz over the less dense zeolitic SiO2 polymorphs. A
drawback of the PBE0-D2 functional, however, is the rather

poor performance for framework densities (FDs), which are
underestimated significantly. Hay et al. studied only two zeo-
lites and a few dense SiO2 polymorphs but considered a larger
range of DFT approaches that include dispersion.12 Several of
the testedmethods [among them PBE-D2, PBE including a dis-
persion correction devised by Tkatchenko and Scheffler (TS),
and vdW-DF2] gave a reasonable prediction of the energy dif-
ferences as well as rather accurate lattice parameters. How-
ever, a closer analysis revealed that the good performance for
lattice parameters is due to an error compensation between
overestimated Si–O bond distances and underestimated Si–
O–Si angles. These findings were essentially corroborated in
more recent work by one of us,31,32 who looked at a larger
set of zeolite structures for which accurate crystal structure
data are available, including both all-silica zeolites and alu-
minophosphate zeotypes (AlPOs). In the first of these studies,
which included three GGA-type functionals (PBE, PBEsol, and
WC) and two dispersion-corrected variants of PBE (PBE-D2
and -TS), the PBE-TS functional came out as the best method,
with a mean of absolute errors (MAE) in lattice parameters of
0.052 Å. Since it was found that the PBEsol functional per-
formed much better for T–O bond distances, the second study
included two dispersion-corrected variants of this functional,
PBEsol-D2 and PBEsol-TS.32 Both approaches gave very accu-
rate lattice parameters, with MAEs of 0.036 Å and 0.032 Å,
respectively, and use of the PBEsol-D2 functional also deliv-
ered excellent energetics for all-silica zeolites, with the devi-
ation between ∆EDFT and ∆Htrans being on the order of the
experimental uncertainty of 1 kJ mol−1 per formula unit of
SiO2. In a very recent study, Albavera-Mata et al. covered
a larger range of exchange-correlation functionals, includ-
ing revised versions of PBE and RPBE dubbed lsPBE/lsRPBE,
respectively, as well as related hybrid functionals.33 More-
over, the authors used a Grimme-type dispersion correction,
deriving a bespoke scaling factor s6 for each functional on
the basis of molecular reference data. The performance of the
different “families” of functionals was then assessed by com-
paring the predicted relative stabilities and molar volumes of
SiO2-zeolites to experimental reference data. While the best
functional, lsRPBE-D, gave rather good agreement for ener-
getics (MAE of 1.9 kJ mol−1 per SiO2 unit), an overestimation
of the molar volume (=underestimation of framework density)
remained prominent.

The present study builds on previous studies on neutral-
framework zeotypes that evaluated the accuracy of DFT cal-
culations in reproducing crystal structures and relative stabil-
ities.31,32 However, it greatly expands the range of approaches
studied: in addition to the PBE-D2 and PBE-TS methods,
newer variants of the pairwise “Grimme-type” dispersion cor-
rection and TS-based many-body dispersion schemes were
included, as well as several members of the non-local vdW-DF
family of methods. We limit the investigation to approaches
that calculate the exchange-correlation energy on the GGA
level of theory, as these functionals are currently of most
practical relevance to studies of zeolite structures, proper-
ties, and dynamics. Besides considering a much larger number
of approaches, this study also goes beyond previous work by
including bulk moduli as an additional quantity that is used in
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the benchmarking. In the following, we first give an overview
of the different methods considered and summarize the refer-
ence data used to benchmark the calculations. We then ana-
lyze the average deviations between DFT and experiments for
lattice parameters, T–O bond distances, and T–O–T angles
for the whole set structures, before presenting an assess-
ment of the performance for bulk moduli and for energetics,
considering only those systems where experimental data are
available.

II. COMPUTATIONAL METHODS

A. Nonlocal van der Waals density functionals
(vdW-DFs)

For the family of nonlocal vdW-DF functionals,34 the
exchange-correlation functional is written as the sum of the
GGA exchange, the LDA correlation, and a non-local correla-
tion functional, which is defined as

Enl
c [n] =

1
2

∫∫
d3rd3r′n(r)φ(r, r′)n(r′), (1)

where n(r) is the electron density at the point r and φ(r,
r′) is a non-local kernel that is approximated by a plasmon-
pole model. The variants of vdW-DF functionals have been
designed by choosing different GGA exchange functionals or
different gradient expansions in the non-local kernel to repro-
duce various asymptotic behaviors of exchange-correlation
energy. The original vdW-DF1 of Dion et al. used the revPBE
exchange functional and Zab = −0.8491 for the coefficient of the
gradient expansion in the kernel.34–36 In the second version,
named vdW-DF2,37 the original GGA exchange is replaced
with the less repulsive PW86 exchange,38 and by setting
Zab = −1.887, a more accurate description for atoms and
molecules is obtained.

In the last ten years, these functionals have been further
improved by modifying the exchange part. Starting from vdW-
DF1 functional, Klimes̆ et al. proposed three new function-
als, optPBE-vdW, optB88-vdW, and optB86b-vdW, obtained
by reparameterizing the PBE, B88, and B86b exchange func-
tional, respectively.39,40 More recently, Berland and Hyldgaard
designed a new exchange functional, LV-PW86r, which is con-
sistent with the nonlocal correlation of vdW-DF1, and there-
fore proposed the vdW-DF-cx functional, where cx stands
for consistent exchange.41 Meanwhile, Hamada improved the
vdW-DF2 functional by replacing the PW86 exchange func-
tional with the B86R functional,42 resulting in the rev-vdW-
DF2 functional.43

B. Dispersion correction methods (DFT + D)

The DFT + D methods add a posteriori a correction for
the dispersion energy on top of the DFT total energy. In the
first generation of these methods, the dispersion energy was
written as a sum of pairwise terms (−C6,AB/R

6
AB
), multiplied

by a damping function to cut out the divergence at small
distance: Grimme’s D2,44 D3,45,46 and Tkatchenko-Scheffler
(TS)47 methods are well-known schemes in this category and
they differ by the way employed to calculate the coefficients

C6,AB and the vdW radii. The D2 method uses the coefficients
of isolated atoms so that the coefficients do not depend on
the chemical situation of the atom in the molecular/solid sys-
tem.44 The D3 method, on the contrary, adjusts the vdW coef-
ficients of an atom on the basis of the coordination number
around the atom.45,46 In the TS method,47 the C6 coefficients,
vdW radii, and atomic polarizabilities of the atoms in the
molecule or in the solid are scaled from those of free atoms,
by calculating the ratio between the volume occupied by an
atom in his environment Veff and the free non-interacting ref-
erence Vfree using Hirshfeld partitioning. An improvement of
the TS method was achieved by considering the ionic state of
the atoms through the iterative Hirshfeld scheme,48 leading to
the TS/HI method.49

Then the original TS scheme was improved several times
to describe the many-body nature of the dispersion inter-
action, which is not included in the pairwise methods. The
first improvement was done by including the long-range elec-
trostatic screening: in this new scheme, which is called the
Tkatchenko-Scheffler + self-consistent screening (TS + SCS)
method, Dyson-like SCS equations are solved to get screened
atomic polarizabilities.50 However, the many-body dispersion
interaction energy, which is important for solids or macro-
molecular systems, is still not completely captured by the
TS + SCS method.51 The many-body dispersion (MBD) scheme
proposed to model the remaining part of the interaction as a
set of quantum harmonic oscillators (QHOs) coupled through a
dipole-dipole potential.50 Especially, it has been shown52 that
the energy difference between the coupled system and the
uncoupled system of QHOs is equal to the RPA energy of this
model system and is written as

Edisp =

∫ ∞
0

dω

2π
ln det

[
CRPA(iω)

]
, (2)

in which the CRPA matrix is defined as

CRPA(iω) = δpq + (1 − δpq)αp(iω)τpq, (3)

where τpq is the dipole-dipole interaction tensor and αp(iω)
is the atomic polarizability. In practice, a range separa-
tion scheme is introduced in the dipole-dipole interac-
tion tensor so that Eq. (2) is further modified to couple
the SCS and MBD approaches, an approach known as the
MBD@rsSCS method.52 Recently, Gould et al. proposed two
refinements of the MBD@rsSCS scheme, which is named
MBD@rsSCS/FI.15 First, they have used the gas phase polar-
izability of fractional ions53 as the reference of the vol-
ume scaling to fully take into account the possible ionic
nature of the system. Second, they introduced an “eigen-
value remapping” method to avoid unphysical polarization
catastrophes during the calculation.15 As a short-hand nota-
tion that reflects the use of the PBE exchange-correlation
functional with these methods, we employ the abbreviations
PBE-MBD and PBE-MBD/FI to designate the MBD@rsSCS and
MBD@rsSCS/FI methods throughout the remainder of this
article.
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C. Computational details

The calculations presented in this work have been per-
formed using the VASP (Vienna ab initio simulation pack-
age) code.54,55 We have used the default VASP projector aug-
mented wave (PAW) potentials of version 5.2 with four valence
electrons for Si (3s23s2), three for Al (3s23p1), five for P (3s23p3),
and six for O (2s22p4). For each system and with each func-
tional, we optimized the structures by following a procedure
to remove as much as possible the Pulay stress. First, we
fitted the energy-volume curve to a Vinet equation of the
state56

E(η) = E0 +
2K0V0

(K′0 − 1)
2
{2 − [5 + 3K′0(η − 1) − 3η]e

−3(K′0−1)(η−1)/2 }, (4)

where η = (V/V0)1/3. From this, the equilibrium volume V0 and
the bulk modulus K0 of each system are obtained. Then, we
obtained our fully relaxed structure by reoptimizing it using
the fitted volume, V0, obtained from the previous step. To
reduce the noise in the energy-volume curve, we have used
a kinetic energy cutoff of 500 eV for the plane-wave basis and
Γ-centered k-meshes with a grid size of 0.4 Å−1. The electronic
iterations were continued until the total energy difference
between successive steps became smaller than 10−6 eV. The
geometry optimizations were performed until the maximum
value of each component of the atomic forces was smaller than
0.01 eV Å−1. In the calculations using the TS method and its
variants, the exchange-correlation energy was obtained using
the Perdew-Burke-Ernzerhof (PBE) functional.35 A detailed
discussion of the TS and MBD implementations in the VASP
code can be found in previous publications15,57,58 and will not
be repeated here. Calculations using the non-local vdW func-
tionals, vdW-DF2 and rev-vdW-DF2 calculations, were per-
formed using the implementation provided in VASP.37,39,40,59
VASP was also used for the vdW-DF-cx functional with the
implementation of Björkman.60

III. REFERENCE DATA AND ERROR ANALYSIS

A. Reference data—Structures

DFT calculations were performed for a total of 16 differ-
ent structures with a neutral framework and either SiO2 or
AlPO4 composition. This set of reference structures consists
of four dense structures, namely, α-quartz and α-cristobalite
as well as their AlPO4 analogues, eight all-silica zeolites, and
four aluminophosphate zeotypes. All structures as well as the
references fromwhich the experimental crystal structure data
were taken are compiled in Table I. In the following, all-silica
zeolites will be typically referred to by their framework type
code (FTC) alone,61 whereas the subscript “AlPO” is added to
the FTC for aluminophosphate zeotypes.

The selection of suitable reference structures follows the
guidelines outlined in more detail in Ref. 31. For example,
only crystal structures determined at room temperature or
lower temperatures were included in the reference set, and
zeolite/zeotype structures were considered only when the
structure determination had been performed for a calcined
sample.

TABLE I. Overview of structures.

Topology Name or acronym References

SiO2 systems
qtza,b α-quartz 62
crsa,b α-cristobalite 63
CHAa SiO2-chabazite 64
FAUa,b Dealuminated zeolite Y 65
FERa,b SiO2-ferrierite 66
IFRa ITQ-4 67
LTA ITQ-29 68
RTE RUB-3 69
SAS SSZ-73 70
TONb ZSM-22 71

AlPO4 systems
qtzb α-berlinite 72
crs Cristobalite-type AlPO4 (LT form) 73
AEN AlPO-53(B) 74
CHA AlPO-34 75
ERIb AlPO-17 76
EZT EMM-3 77

aExperimental ∆Htrans available.
bExperimental K0 available.

B. Reference data—Bulk moduli

Experimental values of the bulk modulus K0 are avail-
able only for a subset of systems, namely, α-quartz,78 α-
cristobalite,79 α-berlinite,80 SiO2 zeolites with FAU,81 FER,82
and TON topologies,83 and for AlPO-17 (ERIAlPO).84 For the
majority of systems where bulk moduli from more than one
source are available, these agree very well with each other,
an exception being α-cristobalite, where values between 11.5
and 18 GPa have been reported. Here, an intermediate value
of 16.4 GPa obtained from Brillouin spectroscopy experiments
was taken as reference value.79

C. Reference data—Energies

Finally, the performance of the different methods in pre-
dicting the enthalpies of transition of all-silica zeolites and
α-cristobalite with respect to α-quartz was assessed. In a
first approximation, the enthalpy of transition ∆Htrans was
approximated with ∆EDFT, the difference in DFT energy (per
SiO2 unit) between a given SiO2 polymorph and α-quartz, fol-
lowing previous studies.30,32 Since experimental enthalpies
of transition have been measured for a collection of zeo-
lites that differs considerably from the set of reference struc-
tures described above, a direct point-by-point comparison
is possible only for a subset of frameworks from Table I for
which experimental ∆Htrans values are available (α-cristobalite,
CHA, FAU, FER, and IFR). An alternative, qualitative possibility
to analyze the results arises from the well-known correla-
tion between the framework density (FD) and the enthalpy of
transition.85,86 Consequently, it can be evaluated how closely
the ∆EDFT values obtained with different functionals fall to
a trendline calculated on the basis of available experimental
∆Htrans values. This trendline was represented by the following
equation:
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∆Htrans = 1.022 58(26.52 − FD). (5)

Here, FD is the framework density in T atoms per 1000 Å3,
and the resulting ∆Htrans is in kJ mol−1. The equation was set
up in a way that it gives an enthalpy of zero for the framework
density of α-quartz. A comparison of experimental ∆Htrans val-
ues to those calculated from this equation is supplied in the
supplementary material. The deviations between calculated
and experimental values are on the order of the typical exper-
imental error of 1 kJ mol−1, indicating that this correlation
should serve as a suitable reference to gauge the performance
of various DFT methods in terms of energetics.

D. Assessment of errors

With regard to structural parameters, the agreement
between a DFT-optimized structure and the experimental ref-
erence was analyzed in terms of lattice parameters, frame-
work densities FD (where FD = 1000 · NT

Vuc
, with NT being the

number of T atoms per unit cell and Vuc the unit cell volume)
as well as T–O bond distances and T–O–T angles. In each case,
the error in a given quantity x between DFT calculation and
experiments was calculated as

errx = xDFT − xexp. (6)

Errors in bulk modulus were calculated according to
Eq. (6) for six systems for which experimental bulk moduli have
been determined, excluding ERIAlPO for reasons discussed
below. For the relative stability with respect to α-quartz, errx
was calculated as the difference between the DFT energy dif-
ference ∆EDFT and the experimental enthalpy of transition
∆Htrans, and including only those five SiO2 systems where
experimental values are available.

In order to calculate the overall error in a given quantity
from the individual errors errx, the mean of absolute errors
(MAE, also termed the mean of unsigned errors MUE by many
authors) was calculated as

MAE =
1
Ni

Ni∑

i=1

���errx,i
���. (7)

While theMAE is a useful measure of the overall deviation,
it does not give insights into systematic over- or underesti-
mations. Such systematic errors can be identified by analysing
the mean of signed errors (MSE)

MSE =
1
Ni

Ni∑

i=1

errx,i. (8)

IV. RESULTS AND DISCUSSION

A. Structural parameters

1. Lattice parameters and framework densities

The mean of signed errors and mean of absolute errors
in lattice parameters obtained with the different functionals
are shown in Fig. 1 (numerical values are tabulated in the sup-
plementary material). Prior to discussing the performance of
the different approaches, we note in passing that the MAE

FIG. 1. Mean of signed errors (red upright triangles) and mean of absolute errors
(blue inverse triangles) in lattice parameters.

and MSE values obtained with the PBE, PBEsol, PBE-D2, and
PBE-TS functionals are slightly larger than the correspond-
ing errors computed in a previous benchmarking study on
an almost identical set of reference structures, which used
the CASTEP code with on-the-fly generated ultrasoft pseu-
dopotentials.31 However, as a comparison between differ-
ent codes is not the aim of the present study, we do not
attempt to elucidate these differences and focus exclusively
on the results obtained with VASP and projector-augmented
waves.

When comparing the performance of the different func-
tionals implemented within VASP, it is apparent that the GGA-
type functionals, PBE and PBEsol, systematically overestimate
the lattice parameters. While the considerable error of PBE
(MAE = 0.207 Å) is reduced by about one third when replacing
it by PBEsol, the fact that MAE and MSE are equal even for the
latter functional shows that all individual lattice parameters
are overpredicted. The three variants of PBE with a Grimme-
type dispersion correction exhibit a rather similar behavior,
all of them performing better than PBEsol, but also overesti-
mating the lattice dimensions. The best choice of the three
appears to be the PBE-D3(BJ) functional. The original PBE-
TS functional gives an MAE of a similar magnitude to PBE-
D3(BJ), but a smaller MSE. Interestingly, use of the TS/HI
correction scheme significantly worsens agreement between
DFT and experiments. PBE-MBD and -MBD/FI are better than
PBE-TS/HI, but worse than PBE-TS, and overpredict all lattice
parameters (MSE = MAE).

Moving to the vdW-DF family of approximations, we find
that vdW-DF1 and vdW-DF2 perform almost as badly as PBE,
despite the inclusion of dispersion interactions (as we will see
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below, this is at least partly related to a considerable over-
estimation of the T–O bond lengths). The other five func-
tionals all provide decent agreement, with MAEs in the range
of 0.10 Å, with optB88-vdW, optB86b-vdW, and vdW-DF-cx
giving somewhat smaller errors than optPBE-vdW and rev-
vdW-DF2. Moreover, their use results in relatively small MSEs
between 0.05 and 0.07 Å, i.e., these functionals have a less
pronounced tendency to overestimate the lattice parameters.
They are essentially on par with PBE-TS.

Since most of the experimental crystal structures were
refined from data obtained at room temperature, there is a
systematic difference between DFT values—which correspond
to the equilibrium lattice dimensions at 0 K—and the experi-
mental values. We have shown in a previous study for the case
of the PBEsol-D2 and PBEsol-TS functionals that the use of
low-temperature, rather than room-temperature experimen-
tal data as reference tends to improve agreement between
DFT and experiments (such low-temperature data are avail-
able only for a few structures from the reference set).32 How-
ever, the observed changes in MSE and MAE values were
fairly small, on the order of 0.01–0.015 Å. Since the MAEs
and MSEs found above are significantly larger than this dif-
ference, and since all functionals show a similar tendency to
overestimate the lattice dimensions, an inclusion of the effect
of temperature on the lattice parameters would not alter
the qualitative findings regarding the more and less accurate
functionals.

Before moving towards bond lengths and angles, we
take a look at the framework densities, where the overall
errors are shown in Fig. 2. All MSEs are negative, meaning
that all functionals underestimate the framework density, a

FIG. 2. MSE (red upright triangles) and MAE (blue inverse triangles) in framework
densities.

consequence of the general tendency to overestimate the
lattice dimensions found above. PBE-TS, optB88-vdW, and
optB86b-vdW underestimate FD only modestly, with MSEs
between −0.13 and −0.18 T atoms per 1000 Å3 (the abso-
lute magnitude of the framework densities ranges from about
13 to 26 T atoms per 1000 Å3, so these errors are on the order
of one per cent). With regard to the absolute error, there are
several “good” functionals with MAE values between 0.3 and
0.4 T atoms per 1000 Å3, namely, PBE-D2, PBE-D3(BJ), PBE-TS,
optB88-vdW, optB86b-vdW, vdW-DF-cx, and rev-vdW-DF2.
Unsurprisingly given the previous findings, PBE, vdW-DF1, and
vdW-DF2 perform worst.

2. T–O bond lengths

Since the T–O bond lengths for a given species of T scat-
ter around an equilibrium value, it is insightful to calculate
the average T–O bond distances daver, considering all non-
equivalent bonds in the different structures. The average T–O
bond distances, including standard deviations, are shown in
Fig. 3. For a given DFT approach, the MSE is, by definition,
equal to the difference between the experimental daver and
the DFT value; therefore, the MSEs are not shown separately.
However, the mean of absolute errors in the T–O distances are
included in Fig. 4.

First of all, we may note that PBE overestimates the T–O
bond lengths significantly, with the differences in the aver-
age bond distance ranging from 0.01 Å for P–O bonds to
0.03 Å for Al–O bonds (MAEs between 0.019 and 0.029 Å). Most
dispersion-corrected PBE-based approaches give only mini-
mally shorter equilibrium bond distances than PBE, and the
MAEs are also similar. A notable exception is the PBE-MBD

FIG. 3. Average Si–O (orange), Al–O (turquoise), and P–O (purple) bond lengths.
Error bars indicate the standard deviations from the average value.
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FIG. 4. MAE in Si–O (orange), Al–O (turquoise), and P–O (purple) bond lengths.

functional, which—like PBEsol without dispersion correction—
results in shorter bond lengths and therefore smaller MAEs
for Si–O and Al–O bonds. Among the vdW-DF approximations,
the vdW-DF1, optPBE-vdW, and vdW-DF2 functionals result
in an even stronger overestimation of T–O bond distances
than PBE, whereas optB88-vdW, optB86b-vdW, vdW-DF-cx,
and rev-vdW-DF2 are on par with PBE and its derivatives.

As a final remark with regard to the bond lengths, we
have to note that, in framework compounds, thermal vibra-
tions lead to a shortening of the “apparent” (observed) T–O
bond lengths in comparison to the actual values. For struc-
tures determined at room temperature, the magnitude of this
shortening is on the order of 0.005 Å.87 Correcting the exper-
imental bond lengths to account for this effect (as we have
done for a subset of structures in a previous study32) would
improve the overall agreement between DFT and experiments;
however, significant deviations would remain.

3. T–O–T bond angles

As the last structural parameter, we compare the T–O–T
angles delivered by the DFT computations to experimental
values. Unlike O–T–O angles, which remain close to the tetra-
hedral angle due to the rigidity of the TO4 tetrahedra, the
T–O–T angles show a rather large variation: In the set
of experimental reference structures, the observed Si–O–Si
angles range from 138.4◦ to 167.4◦ and Al–O–P angles cover an
even larger range from 132.2◦ to 173.2◦.

The MAE and MSE values for Si–O–Si and Al–O–P bond
angles are shown in Fig. 5. For Si–O–Si angles, the function-
als without dispersion correction, PBE and PBEsol, give no
systematic under- or overestimation (MSE close to zero) and
small MAEs of roughly 1.5◦. Among the dispersion-corrected

FIG. 5. MSE (upright triangles) and MAE (inverse triangles) in Si–O–Si (orange)
and Al–O–P (turquoise) angles.

approaches, the sophisticated PBE-based approaches PBE-
TS/HI, -MBD, and -MBD/FI as well as vdW-DF2 also deliver
reasonable agreement with experiments, with MAEs below 2◦

and only a weak tendency to underestimate the Si–O–Si angle.
The PBE-D3 and vdW-DF1 functionals form a third group, with
MAEs of about 2.5◦, whereas all other DFT + D and vdW-DF
approaches perform significantly worse. The negative MSE
values of these functionals, which mostly fall between −2◦

and −3◦, indicate a systematic underestimation of the Si–O–
Si angles, in accordance with earlier studies.12,31,32 As dis-
cussed previously, such an underestimation is likely related
to an overestimation of the dispersive interaction between
the two T atoms at opposite sides of the T–O–T linkage,
which favours smaller T–T distances and therefore smaller
T–O–T angles. The trends in the overall errors for Al–O–P
angles are altogether similar to those found above, with PBE-
TS/HI, -MBD, -MBD/FI, and vdW-DF2 giving the smallest
MAEs. Interestingly, these functionals also have no systematic
tendency to underestimate the Al–O–P angles, with MSEs that
are essentially zero.

B. Bulk moduli

The MSE and MAE in bulk moduli were calculated on the
basis of datapoints for six of the seven systems for which
experimental values are available, omitting ERIAlPO for rea-
sons explained below. The calculated errors are shown in
Fig. 6. Since the experimental values range from 18 to 38 GPa,
MAEs on the order of 3 GPa correspond—roughly—to rela-
tive errors on the order of 10%–15%. PBE and PBEsol as well
as PBE-TS, vdW-DF1, and vdW-DF2 give large MAEs above
4.5 GPa, with the three latter functionals showing a systematic
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FIG. 6. MSE (red upright triangles) and MAE (blue inverse triangles) in bulk moduli.

tendency to overestimate the bulk modulus. The considerable
deviations observed for PBE-TS are quite surprising, as this
method was found to give a rather accurate prediction of K0
for a template-containing fluoroaluminophosphate zeotype in
a recent computational study.88 The best results are obtained
with the PBE-D2, PBE-D3(BJ), and rev-vdW-DF2 function-
als, with MAEs on the order of 2.5 GPa, whereas all other
functionals give MAEs between 3 and 4.5 GPa.

The experimental value of K0 for ERIAlPO (AlPO-17), which
was obtained from the evolution of the unit cell volume upon
compression up to pressures of 1.3 GPa, amounts to 31.2 GPa.84
Interestingly, the compressibility increases with pressure, an
unusual behavior that points to an elastic instability. The pecu-
liar elastic properties of AlPO-17 are also evidenced by its
pronounced negative thermal expansion.76 The DFT calcula-
tions deliver bulk moduli between 47 and 64 GPa, values that
are 50%–100% larger than the experimental K0. As such dras-
tic deviations are observed regardless of the choice of func-
tional, we must assume that there is a fundamental problem
for this particular system. Although we have confidence in
the computational results, we cannot determine the reason
for the disagreement between theory and experiments at this
point. In any case, the inclusion of ERIAlPO in the calculation of
MSE and MAE would affect the resulting values to an extent
that the overall performance of a given functional would be
obscured. Therefore, it was omitted from the overall error
calculation.

C. Relative stability of SiO2 systems

The full set of computed ∆EDFT values obtained for
SiO2 systems with different functionals is given in the
supplementary material. In the analysis presented here, we

look at two different aspects: first, we classify the func-
tionals according to the MSE and MAE values calculated for
the subset of structures for which experimental enthalpies
of transition are available (α-cristobalite, CHA, FAU, FER,
and IFR). Following this, we illustrate the performance of
some representative functionals by plotting the ∆EDFT values
against the trendline based on experimental data. We omit
the pure-GGA functionals PBE and PBEsol from the discussion
because these functionals give values of ∆EDFT that are close
to zero (sometimes even negative), regardless of the frame-
work density, thus failing to reproduce even the general trend
of increasing ∆EDFT with decreasing FD. This behavior has
been observed in previous studies and is only corroborated
here.12,31

The MAE and MSE values of the approximate van der
Waals methods are shown in Fig. 7. According to the overall
errors, we may group the functionals as follows:

• MAE > 2 kJ mol−1, MSE negative: These functionals
deliver too small energy differences, i.e., they under-
estimate the relative instability of the less dense SiO2
polymorphs with respect to α-quartz. This is the case
for the PBE-TS/HI and PBE-MBD/FI functionals.

• MAE < 2 kJ mol−1: These functionals give a fairly rea-
sonable prediction of the relative stabilities. Among the
six functionals falling in this category, PBE-D2, PBE-D3,
and PBE-MBD all have MAE values of 1 kJ mol−1 or less,
thus being significantly better than the other three,
PBE-D3(BJ), vdW-DF2, and rev-vdW-DF2, for which
the MAEs are between 1.5 and 2 kJ mol−1.

FIG. 7. MSE (red upright triangles) and MAE (blue inverse triangles) calculated
from DFT energy differences ∆EDFT and experimental enthalpies of transition
∆Htrans.
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• MAE > 2 kJ mol−1, MSE positive: Functionals falling in
this group exaggerate the relative instability of the less
dense SiO2 polymorphs. Here, vdW-DF1 and vdW-DF-
cx still show a reasonable performance, withMAEs only
slightly above 2 kJ mol−1, whereas the errors of PBE-
TS, optPBE-vdW, optB88-vdW, and optB86b-vdW are
in the range of 4 to 5 kJ mol−1.

Figure 8 shows a plot of all individual datapoints of ∆EDFT

against the framework density for PBE-D3, PBE-MDB, PBE-
MDB/FI, optPBE-vdW, and rev-vdW-DF2 and compares them
to the trendline based on experimental enthalpies of transi-
tion. It is evident that the trends identified above are fully
confirmed by this approach: whereas datapoints obtained with
the PBE-MBD/FI and optPBE-vdW functionals lie well below
and above the trendline, respectively, those of the other three
functionals fall much closer to it. Among these three, the rev-
vdW-DF2 functional gives energy differences that are system-
atically too large, as one could deduce from the identical val-
ues of MSE and MAE (Fig. 7). For PBE-D3 and PBE-MBD, it is
impossible to discern which of the two is more accurate on the
basis of the available datapoints. In order to identify the “best”
among the well-performing functionals, it would be necessary
to perform a systematic study that includes a larger number
of SiO2-zeolites for which experimental enthalpies of tran-
sition are available. However, when considering the typical
magnitude of experimental errors and the other assumptions
that were made in the present work (especially the neglect of
vibrational contributions), one might also argue that there is
little point in making such fine distinctions. We may note that
PBE-D3 calculations using the CP2K code89 that were recently
reported by one of us delivered an MAE of 1.4 kJ mol−1 across
a set containing α-cristobalite and 16 all-silica zeolites, con-
firming the suitability of this functional to predict the relative
stabilities of SiO2 systems.90

Given the difficulties in performing calorimetric experi-
ments to determine enthalpies of transition, one could also

FIG. 8. Plot of the DFT energy difference ∆EDFT against the framework density
FD for selected functionals. The line corresponds to the experimental correlation
between ∆Htrans and FD given in Eq. (5).

envisage a benchmarking of DFT against higher-level calcula-
tions, as is routinely done for molecular systems, where calcu-
lations using the coupled cluster method with single, double,
and perturbative triple excitations [CCSD(T)] are often con-
sidered as “gold standard.” However, performing such higher-
level calculations is, at present, unfeasible for most periodic
systems of interest. Nevertheless, we should mention that
the energy difference between α-quartz and α-cristobalite
was calculated by means of accurate quantum Monte Carlo
(QMC) calculations by Hay et al.12 Their QMC value of
1.9 ± 0.8 kJ mol−1 compares well with the experimental
enthalpy of transition of 2.8 kJ mol−1.86 For the quartz-
cristobalite energy difference, nine of the 14 DFT-D and vdW-
DF methods considered in the present work are also within
1 kJ mol−1 of the experimental value. Clearly, further advance-
ments in the development of highly accurate computational
methods, especially their implementation for periodic solids,
will facilitate the benchmarking of DFT methods.

An additional aspect that is worth commenting on is the
qualitatively different behavior of the two TS-type approaches
considered: where PBE-TS overestimates the energy differ-
ences and PBE-TS/HI underestimates them. It has been found
before that the former functional overstabilizes the dense
phases due to an exaggeration of dispersion interactions.31
However, a replacement of conventional Hirshfeld partition-
ing by the iterative-Hirshfeld variant apparently leads to an
overcorrection of this error. A similar issue is found when
using the fractional-ion MBD method instead of PBE-MBD.

D. Discussion

Altogether, we may summarize the performance of the
different groups of approaches as follows:

• The tested GGA functionals without dispersion correc-
tion, PBE and PBEsol, perform very poorly for lattice
parameters, bulk moduli, and relative stabilities, indi-
cating that the inclusion of dispersion interactions is
pivotal to correctly reproduce these quantities.

• An augmentation of the PBE functional with a Grimme-
type dispersion correction affords a fairly accurate
prediction of lattice parameters, bulk moduli, and rel-
ative stabilities. All three schemes appear to be quite
robust, and the differences between them are rather
intricate.

• The PBE-TS functional performs very well for lattice
parameters but gives large errors in T–O–T angles,
energetics, and bulk moduli. Use of the iterative-
Hirshfeld variant PBE-TS/HI improves agreement with
experiments in angles but worsens the prediction of
lattice parameters.

• PBE-MBD does rather well for all structural parame-
ters, gives relative stabilities of quantitative accuracy,
and provides a reasonable prediction of bulk mod-
uli. Altogether, it can be judged as the best approach
if all quantities studied are considered to be equally
relevant. Interestingly, use of the fractional-ion MBD
approach deteriorates the performance for lattice
parameters (slightly) and energetics (significantly).
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• From the vdW-DF family of approaches, vdW-DF1 and
vdW-DF2 give large deviations for lattice parameters,
T–O bond lengths and bulk moduli, while providing a
good prediction of the relative stabilities. The optPBE-
vdW and—more markedly—optB88-vdW and optB86b-
vdW functionals perform better for lattice parame-
ters, but much worse for energetics and T–O–T angles.
vdW-DF-cx and rev-vdW-DF2 show a more balanced
performance across the board of quantities studied.
Of the two, rev-vdW-DF2 can be considered to be
the better choice due to the pronounced tendency of
vdW-DF-cx to underestimate the T–O–T angles.

As already pointed out by Hay et al.,12 error cancellation
between overestimated T–O distances and underestimated
T–O–T angles may lead to a good overall agreement in lat-
tice parameters. This is indeed something we observe for
several of the approaches considered, namely, the Grimme-
type methods, the PBE-TS functional, as well as optPBE-vdW,
optB88-vdW, and optB86b-vdW. The deterioration of the per-
formance for lattice parameters when replacing PBE-TS by
PBE-TS/HI can be attributed to precisely this phenomenon,
as PBE-TS/HI gives more accurate (less underestimated)
T–O–T angles and, consequently, too large lattice parame-
ters. We have discussed above that the underestimation of
T–O–T angles is likely caused by an overestimation of dis-
persion interactions between neighbouring T atoms. In this
regard, it is worth noting that several of the functionals that
suffer from this problem tend to overestimate bulk moduli
and to overstabilise the dense phases, which is further evi-
dence for a systematic overestimation of the role of dispersion
interactions. On the other hand, the Grimme-type approaches
underestimate the angles but give accurate relative stabilities,
so one cannot straightforwardly extrapolate between different
quantities and functionals.

V. CONCLUSIONS

Altogether, we observe that several methods from both
the DFT + D and the vdW-DF families deliver fairly accu-
rate lattice parameters for neutral-framework zeotypes, with
MAEs between 0.08 and 0.12 Å. However, we also have to
note that many methods combine an overestimation of T–O
bond distances with an underestimation of T–O–T angles, and
good agreement for lattice parameters is, therefore, partly
due to error cancellation. While the numerical values have
to be treated with some caution due to the systematic dif-
ference between the DFT-optimized (0 K) structures and the
experimental reference data, mostly obtained at room tem-
perature, our previous work allows us to conclude that the
observed deviations between DFT and experiments are con-
siderably larger than the typical changes in lattice param-
eters between room temperature and cryogenic tempera-
tures. In most instances, the methods that perform well for
lattice parameters also give acceptable bulk moduli (PBE-TS
is an exception). The reasonable agreement between DFT-
computed and experimental bulk moduli for six of the seven
compounds for which experimental values are available shows
the robustness of the approach. However, we cannot, at

present, elucidate the significant deviations for the seventh
system, ERIAlPO, which certainly warrants further attention
from the side of computations.

With regard to relative stabilities, several methods that
perform well for structural parameters significantly overesti-
mate the energy difference between quartz and other phases
(e.g., PBE-TS, optPBE-vdW, and optB88-vdW), i.e., they over-
stabilize the dense phase. Conversely, vdW-DF1 and vdW-DF2,
which give significantly too large lattice parameters, do rea-
sonably well for relative stabilities. Thus, these are indeed
cases where we observe a “trade-off” between accuracy for
structures and accuracy for energetics, as found in a pre-
vious benchmarking study for layered materials by Tawfik
et al.14 However, while only the PBE-MBD/FI functional and
the meta-GGA SCAN-rVV10 functional were found to perform
well for both interlayer distances and binding energies in the
case of layered materials, there are actually several methods
of varying complexity that provide good agreement for lattice
parameters and relative stabilities for neutral-framework zeo-
types. While PBE-MBD shows the best overall performance,
rev-vdW-DF2 and some of the Grimme-type methods are also
doing reasonably well, so all of these methods could be rec-
ommended, depending on the task in question: for example,
PBE-D3 could be used in ab initio molecular dynamics stud-
ies for which PBE-MBD is too computationally demanding.
At this point, we cannot elucidate the origin of the qualita-
tively different performance of some functionals for frame-
work materials on the one hand, and layered materials on
the other hand, but we hypothesize that the differences are
related to the pronounced anisotropy of van der Waals inter-
actions in the latter group of materials. Yet a different pic-
ture arises when looking at the binding energies of molecular
complexes, for which different vdW-DF methods (vdW-DF2,
rev-vdW-DF2, and, most prominently, vdW-DF-cx) outper-
form TS- and MBD-based dispersion-corrected approaches.7
Altogether, it becomes more and more apparent that one can-
not, at this point, expect general recommendations that would
be valid across different groups of systems, as the choice of a
suitable functional will depend both on the nature of the sys-
tem in question and the quantity or quantities that are of most
relevance. In the future, we will extend our investigations to
adsorption enthalpies of guest molecules adsorbed in SiO2 and
AlPO4 frameworks. In DFT studies of adsorption, the choice of
an appropriate means to include dispersion interactions plays
a pivotal role, as different approximate van der Waals meth-
ods may result in vastly different adsorption enthalpies, even
for small molecules like methane or carbon dioxide.20,23

SUPPLEMENTARY MATERIAL

See supplementary material for additional tables, includ-
ing an EXCEL sheet reporting the individual results, and DFT-
optimized structures in CIF format.
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